DataRobot Enhances Enterprise AI Platform, Further Automating the Path from Data to Value
DataRobot , the leader in enterprise , today unveiled new features to its Enterprise platform designed to automate the entire end-to-end data science process, introducing an Catalog and next-generation automated feature engineering
In the race to innovate with , organizations must embrace a solution that can automate the time-intensive process for everything associated with success, including identifying relevant data sources, preparing data for , building and deploying machine learning models, and monitoring and managing models over time. According to Gartner, Inc., “By 2025, 50% of data scientist activities will be automated by AI, easing the acute talent shortage.” (Gartner, Inc., How Augmented Machine Learning is Democratizing Data Science, August 29, 2019).
With its newly enhanced platform, DataRobot further empowers citizen data scientists to successfully create advanced AI applications while making expert data scientists even more productive. The DataRobot Enterprise AI Platform provides automation across the entire AI lifecycle — organizing, building, deploying, running, and managing AI assets — to accelerate and streamline a user’s journey from data to value.
AI CatalogIn its latest release, DataRobot has added an AI Catalog to its software. This is based on DataRobot’s February acquisition of Cursor, a data collaboration platform founded to help organizations find, understand, and use data more efficiently. The AI Catalog creates a collaborative environment for enterprise AI by providing users with the ability to search for any dataset, share new sources, and comment and tag assets to promote understanding and reuse. AI Catalog also assists with data science productivity by providing the ability to prepare and manage feature lists to share and use in new projects.
By integrating search and collaboration capabilities into its existing platform, DataRobot users now have secure access to trusted data assets from a governed AI environment. DataRobot enforces strict sharing permissions and provides lineage to promote safe and trustworthy machine learning applications. Additional data management benefits include the ability to connect to any location to access data — whether it’s in a data lake, database, in the cloud, or on-premise.
Automated Feature EngineeringDataRobot pioneered automated feature engineering and makes extensive use of it in its Automated Machine Learning and Automated Time Series products. The release of DataRobot’s new AI Catalog has enabled the next-generation of automated feature engineering by allowing users to automatically discover new features from multiple related datasets.
Manual feature engineering is often considered the most laborious and time-consuming step in the data science workflow. By automating this process, DataRobot is greatly accelerating how users prepare datasets to improve machine learning model performance. These new capabilities, which are the culmination of research and development DataRobot has conducted over the last three years, enable users to quickly find new data from multiple sources and apply simple business rules to automate the creation of large numbers of useful features and the subsequent transformation of those features for each specific algorithm.[…]
No comments:
Post a Comment